Scientists have found a way to make sure their mutant genetic creations don't spread in the wild
In Ray Bradbury’s classic short story “A Sound of Thunder,” there is a lesson no doubt heavy on the minds of today’s gene-hacking scientists: a man travels back in time to hunt dinosaurs, only to find that by mistakenly stepping on a butterfly he subtly alters the entire future. With our newly acquired ability to permanently alter the genetics of entire species, it’s hard not to wonder whether Bradbury’s writings were fiction or foreshadowing.
The good news is that a group of scientists at MIT and Harvard think they may have come up with a way to keep genetically engineered mutants from messing around too much with the course of evolution.
Using a gene-editing technique called Crispr, scientists can make these mutants by creating what’s known as a gene drive to circumvent the traditional rules of genetic inheritance. Gene drives overcome the 50-50 odds a parent has of passing on its genes to offspring, instead “driving” a desired gene edit to reoccur in nearly 100 percent of offspring. This kind of engineering could be useful in the wild for solving major global issues, like Zika virus: by engineering a mosquito that passes on a fatal defect to its offspring and releasing it to breed with wild populations, researchers believe they could vastly reduce the spread of Zika. The very big catch is that we have no sense of the size of such engineering’s butterfly effects—it could theoretically cause a global mosquito extinction, which is probably a bad idea.